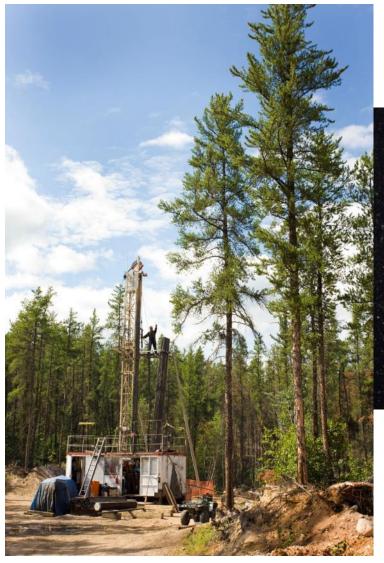
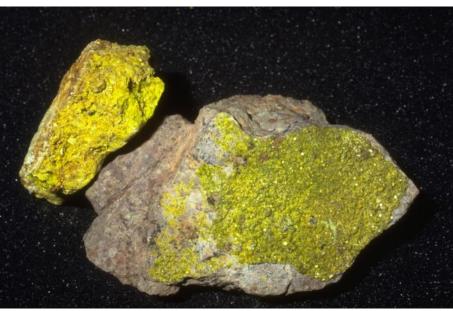


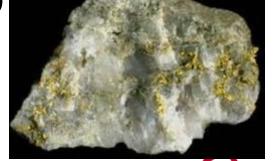
Uranium: 101 Information Session

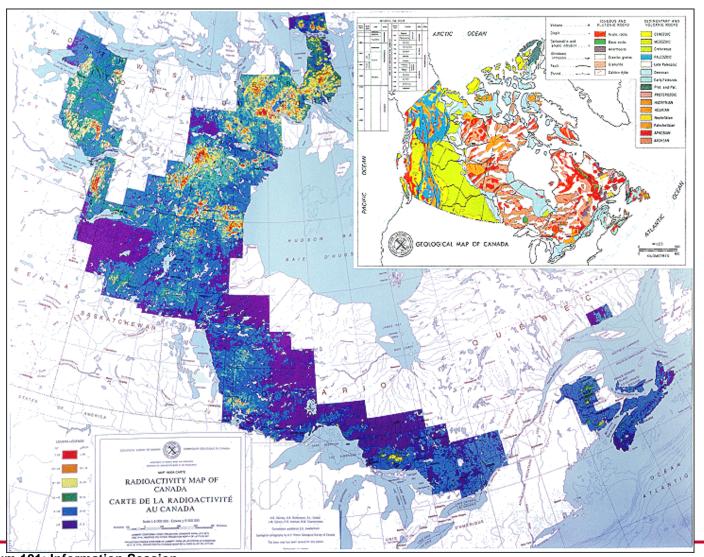

Nunavut Mining Symposium April 2014


Contents

- Uranium Overview
- Unique Market
 - Market Conditions
- ► Radiation: Commodity specific hazard
- Managing Radiation
- Performance at uranium mine sites

Uranium


Uranium is a metal, common and abundant in nature, found in most rocks, soil, rivers, oceans, food and the human body.


Uranium Overview

- **▶** Gold mine
 - Background level: trace
 - Average mining grade: 1 2 ppm
- **▶** Uranium Mine
 - Background level: 2 4 ppm
 - Average grade worldwide: 5000 ppm
 - Saskatchewan High Grade: 200,000 ppm

Uranium Overview

What makes the Uranium Market Unique?

- ▶ Uranium (U_3O_8) is a commodity
 - "any unprocessed or partially processed good" (Source: Dictionary.com)
 - Similar to gold, silver, copper, and other commodities
 - Conventional mining is often used
 - Open Pit, Underground mining is common in all minerals
 - After processing and packaging, virtually homogeneous
 - Origin of product becomes less important technically
 - Quality difference is minimal at this stage

<u>Summary:</u> Uranium is a commodity - this does not make it unique, in fact it makes it similar to other minerals

Uranium - uses

- Uranium has only two commercial uses
 - Nuclear Power
 - Nuclear Medicine
- Nuclear Power is by far the most significant consumer
 - Percentage of electricity generated from Nuclear ranges from zero in many countries to 75% in France

The limited use of uranium makes it somewhat unique among commodities

 Most commodities have widespread usage and therefore broad markets – uranium has neither

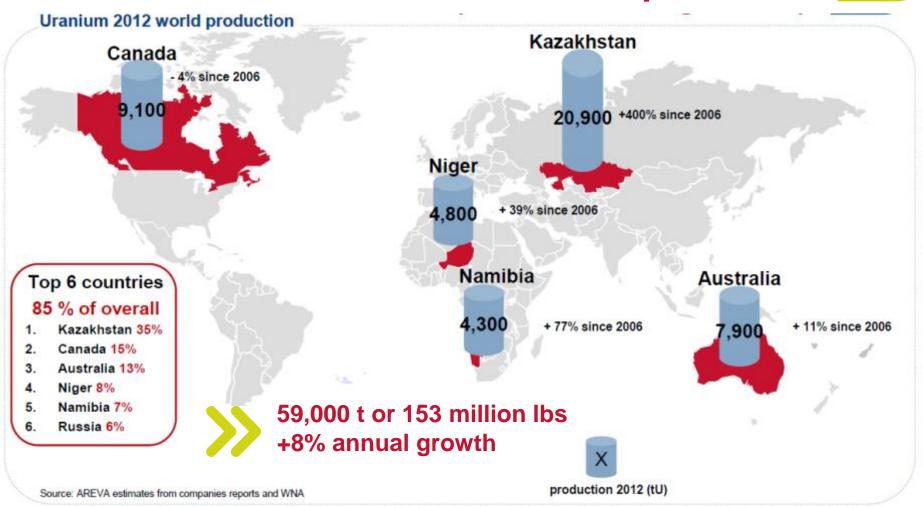
Uranium market players

- Limited number of customers
 - Demand comes from the Nuclear Power industry
 - Approximately 400 operating nuclear reactors
 - But many utilities own a number of reactors
 - Therefore, less than 100 different customers
- Typical customer profile is unusual
 - Electricity generation is generally a natural monopoly
 - Most customers are state-owned utilities

Customers know suppliers have a limited market

Uranium market players

- Limited number of suppliers
 - Over 80% of uranium production in recent years is from less than 10 companies
 - Many companies exploring for uranium
 - But may not have the capability to bring new deposits into production
 - Significant regulatory expertise required
 - Very long lead time to bring new mines into production


Suppliers know customers have limited sources of supply

Additional market factors

- Security of supply
 - Key factor for utility decisions on sourcing
 - Geographic diversity
 - Supplier diversity
- Oversupply corrections are slow
 - Mines can be expensive to shut-down

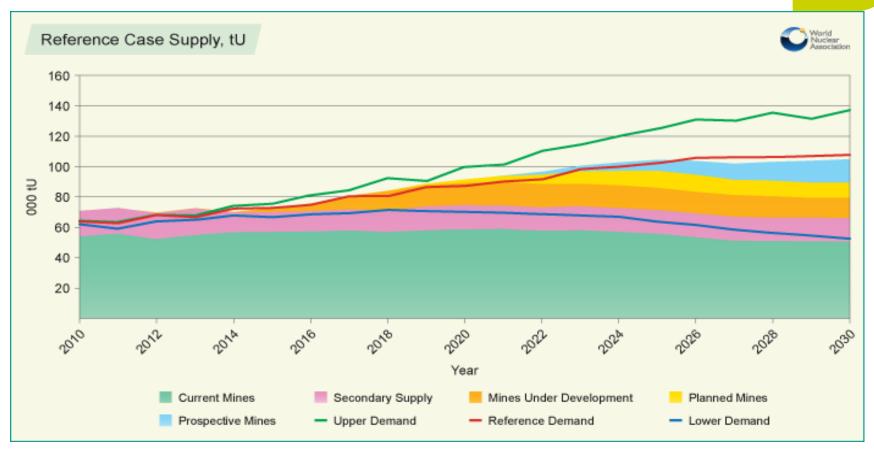
Balance between supply and demand is dependent upon the balance between all of these factors at any given time

Market Conditions – Uranium prices

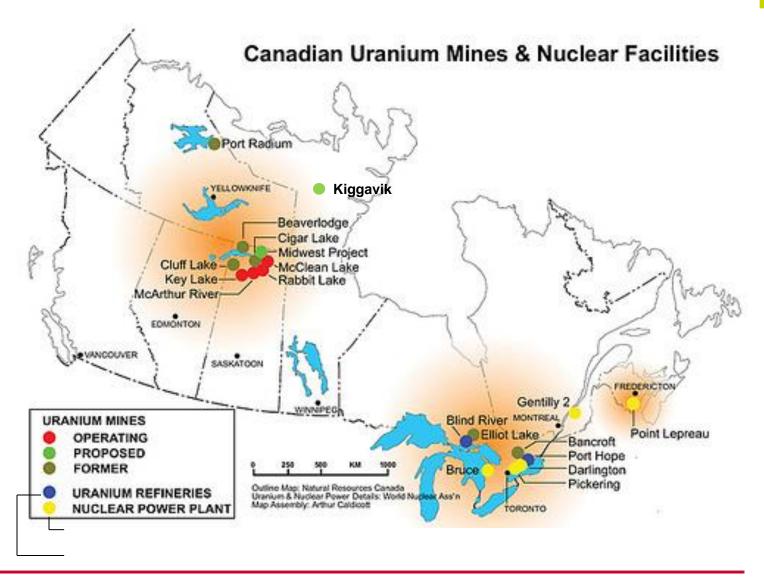
25 year

Source: Ux Consulting Company, LLC – please see http://www.uxc.com/ for more information

Market Conditions – Uranium prices


Five year

Source: Ux Consulting Company, LLC – please see http://www.uxc.com/ for more information

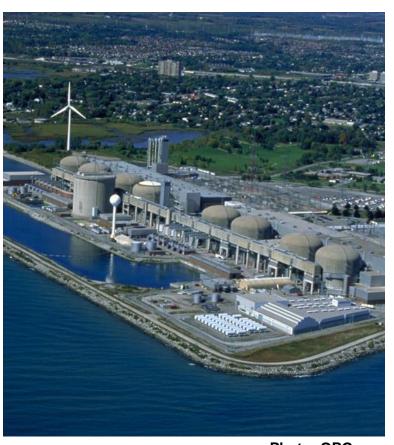

Market Conditions – long-term optimism

- All developing, planned and prospective mines must reach production within scheduled timeframes to meet expected demand
 - History has proven this to be difficult to accomplish

Canadian Nuclear Industry

Mining Uranium

Processing Uranium


Containment Structure Pressurizer Steam Generator Generator Reactor Vessel Condenser

Schematic of nuclear power reactor

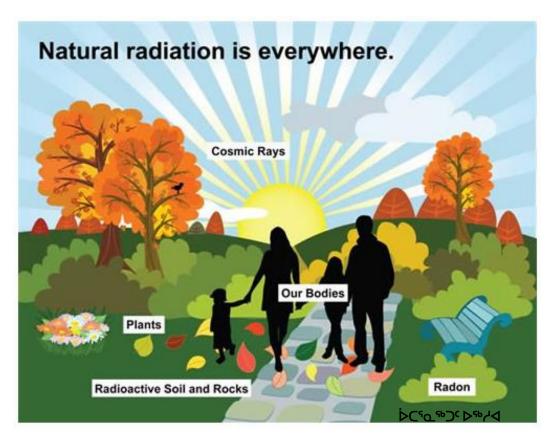
Several additional steps are required to turn U₃O₈ into fuel for a nuclear power plant

- Refining
- Conversion
- Enrichment
- Fuel Fabrication

Powering Reactors

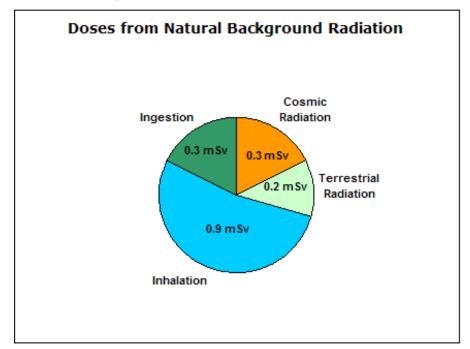
Ontario Power Generation's Pickering Nuclear site is capable of supplying most of Toronto's electricity needs.

Energy Equivalents


Power Production Equivalents

Source: Nuclear Energy Institute

Radiation

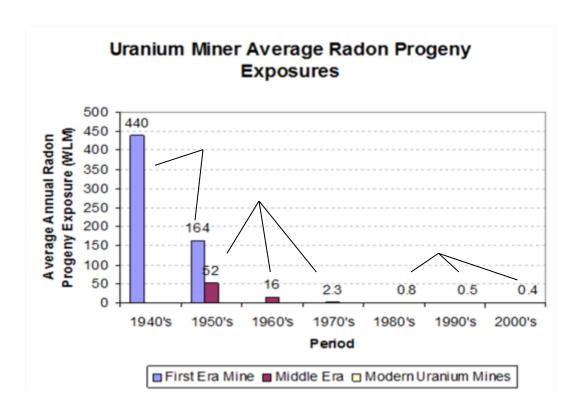

- Natural Background Radiation Sources
 - Cosmic radiation
 - Terrestrial radiation
 - Intakes through
 - Inhalation
 - Ingestion

According to the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), there are four major sources of natural radiation: cosmic radiation, terrestrial radiation, and intakes of naturally-occurring radionuclides through inhalation and ingestion.

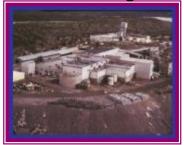
Radiation – Commody Specific Hazard

- ► Effective dose from natural radiation:
 - Worldwide average effective dose from natural radiation is approximately
 2.4 mSv/year
 - In Canada the average effective dose is 1.8 mSv

Source: CNSC Fact Sheet - Natural Background Radiation, January 2013


History of Doses: Radon Uranium Discovery

- In 1931, at Great Bear Lake, prospector Gilbert Labine discovered the first uranium deposit.
- ▶ Port Radium, in the Northwest Territories, was the location of the first uranium mine site.


History of Doses

Port Radium

Beaverlodge

McClean Lake

Uranium 101: Information Session

Radiation: Industry Oversight

	INTERNATIONAL OVERSIGHT
UNSCEAR	United Nations Scientific Committee on the Effects of Atomic Radiation
ICRP	International Commission on Radiological Protection
IAEA	International Atomic Energy Agency
WHO	World Health Organization

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Radiation: Commodity Specific Hazard

Easily measured

Radiation: Commodity Specific Hazards

- Low specific radioactivity
- Not flammable
- Very low solubility
- Stable form of uranium
- Generally handled as other heavy metals

Un-calcined Yellowcake

Calcined Yellowcake

History of Doses: Radon Modern Era Mines in Canada

McClean Lake

Modern Knowledge and Practices

Knowledge gained through studies of past miners

 Licensed, regulated and monitored by the Federal, Territorial & Provincial Governments

- Dose Limits
- Improved Mining Techniques
 - Containment
 - Ventilation

Managing Radiation

- ► In Canada Uranium Mines and Mills are regulated by the Canadian Nuclear Safety Commission (CNSC)
 - ✓ Regulates and licenses all existing and proposed uranium mining and milling operations in Canada
 - ✓ Manages licensing, certification and compliance in accordance with the requirements of the Nuclear Safety and Control Act and its Regulations
 - ✓ Focus on health, safety, security and the environment
 - ✓ Ensures Canada implements its international obligations on the safe use of nuclear materials

More Resources

- Nuclear Energy at a Glance (Nuclear Energy Institute):
 - http://safetyfirst.nei.org/wordpress/wpcontent/uploads/2011/08/splash.swf
- How It Works (Canadian Nuclear Association):
 - http://www.cna.ca/how_works/
- Nuclear Fuel Cycle (World Nuclear Association):
 - http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Introduction/Nuclear-Fuel-Cycle-Overview/
- Uranium 101 (Cameco):
 - http://www.cameco.com/uranium_101/

Uranium 101: Information Session

