Energy Efficiency and Renewable Sources in Mining Deployments

M. Escalante Soberanis, A. Alnaggar, W. Mérida

Nunavut

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA CLEAN ENERGY RESEARCH CENTRE <u>م</u>مهر ککمومین ۵۵۲۵۰ کار

Objectives

- Comparing two renewable technologies (PV and Wind) with diesel based power systems
 - Why to reduce diesel consumption
 - Lower CO₂ emissions
 - Lower net present cost of mining projects

THE UNIVERSITY OF BRITISH COLUMBIA Clean energy research centre

Data Collection – Grid Location

a place of mind

Modeling Approach

- Collect the database of existing Data
- Modeling software used : HOMER
- Cases modeled
 - Case # 1 Data from PV system (Max population #127)
 - Case # 2 Data from Wind Energy

THE UNIVERSITY OF BRITISH COLUMBIA Clean energy research centre

Benefits

- Cost
- Reliability
- Supply side opportunities
- Demand side opportunities

THE UNIVERSITY OF BRITISH COLUMBIA Clean energy research centre

INTRODUCTION

- Average cost of \$1.3 USD per kWh in remote communities in Northern Canada (Arriaga et al., 2013)
- Energy costs in mining industry: 15% for metals and 19% for non-metals (Levesque et al., 2014)
- Diavik Diamond Mine supply 8.5% of its power needs through wind energy with a total capacity of 9.2 MW (17 GWh yearly)

Strategies to Follow

UBC

a place of mind

Data Source for Two cases

Month	Clearness Index	Daily Radiation [kWh m ⁻²]	Wind Speed Average [m s ⁻¹]
January	0.394	0.110	6.3
February	0.504	0.710	6.4
March	0.556	2.100	6.3
April	0.558	3.900	6.2
May	0.520	5.150	6.0
June	0.486	5.540	5.2
July	0.511	5.440	5.7
August	0.467	3.760	6.2
September	0.453	2.190	6.8
October	0.473	0.980	7.0
November	0.444	0.220	6.0
December	0.319	0.020	5.8

a place of mind

Case # 1 : Exploration Phase

- Maximum population: 127
- Minimum population: 36
- Period: February to October (270 days)
- Project lifetime: 3 years

Solar PV and Solar Thermal

a place of mind

Data from Residential Facility

a place of mind

Initial Finding #1: System Behavior

Predicted Trend of the generator with battery bank ad PV system

a place of mind

Initial Finding # 2: Exploration Phase

Architecture	Annualized Cap. (USD)	Diesel Savings
Genset Battery	\$40K	74K Liters
Genset Battery Solar PV	\$90K	140K Liters

Generators alone will consume 1.5 million liters of diesel over 3 years of operation

a place of mind

Sensitivity of the Statistical Model

Tornado chart of five parameters' impact on the COE for the exploration phase. COE of base case was calculated as \$1.327 USD.

UBC

a place of mind

Recommendation #1: Solar Water Heating

- Generation: 1 to 14 kWh/day
- Water heating
 - Highest energy consumption
- Why:
 - Savings: 10-37 Liters/day of diesel
 - Payback: as short as 150 days of use.

a place of mind

Recommendation # 2 : Use CFL

Disadvantages of Incandescent lamps

- Higher consumption per day (3.5 KWh)
- More lamps required

Solution : Install CFL bulbs!!

Requirement : Initial Capital:= \$1,000 ballasts = \$3,000

Advantages of CFL

- Less Lamps (1:4 per W)
- 30,000 kWh/year less than incandescent lamps
- \$25K per year savings!!

a place of mind THE UNIVERSI

THE UNIVERSITY OF BRITISH COLUMBIA

Conclusions on Case 1

- PV feasible if load is 3,000-6,000 kWh per day
- 50,000 L if diesel saved per year
- Energy efficiency and PV can reduce up to 0.83 MWh per person per year

Case # 2 : Wind Energy Extraction Phase

- Constant Load: 23 MW
- Systems Investigated
 - Diesel Generators :20 MW ; 11 MW
 - Wind farm : 16.5 MW ;
 - Storage system : 43 MWh
 - AC/DC converter : 15 MW

Initial Findings: Extraction Phase

UBC

a place of mind

Comparison of Wind and Diesel

	Annualized Cap. (USD)	Diesel Savings
Case # 1 Genset + Battery	\$13 Million	41 Million Liters
Case # 2 Genset Battery Wind	\$9 Million	240 Million Liters

Generators alone will consume 730 million liters of diesel over 10 years of operation

a place of mind

Model Sensitivity

Tornado chart of five parameters' impact on the COE for the extraction phase. COE of base case was calculated as \$0.674 USD.

UBC

a place of mind

Conclusions in Wind Systems

- Wind farm could save 25 million L of diesel per year
- 33% reduction in CO2

a place of mind

Future Perspectives

- Provincial and federal energy grants
- Installing an anemometer for wind measurements
- Energy monitoring system
- Insulations for water heating systems
- Heat Recovery

THE UNIVERSITY OF BRITISH COLUMBIA Clean energy research centre

Acknowledgments

- NSERC
- Industrial Partner

a place of mind

mauricio.escalante@mech.ubc.ca

walter.merida@ubc.ca

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA