
## Transforming the Energy Supply in the Arctic: One Mine and One Community at the Time



NUNAVUT MINING SYMPOSIUM APRIL 6<sup>th</sup> 2016

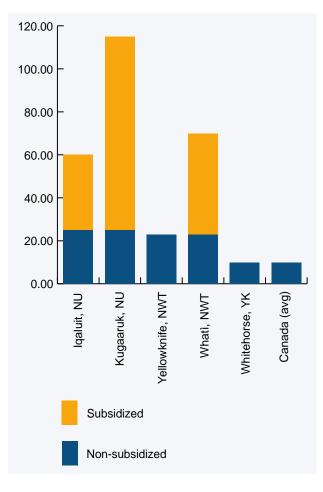


## Diesel Consumption in the Nunavut: Growing and Unsustainable



|                                       | Yukon | NWT | Nunavut |
|---------------------------------------|-------|-----|---------|
| Diesel-<br>powered<br>communities     | 5     | 23  | 25      |
| Hydro-<br>powered<br>communities      | 16    | 9   | 0       |
| Natural gas<br>powered<br>communities | 0     | 2   | 0       |

#### TUGLIQ's objectives:


- 1. Diversify away from diesel the power generation in the Arctic
- 2. Focus on distributed/local power generation
- 3. Create a new economic vector, job opportunities and revenue stream for the Inuit communities



## Diesel Captivity Limits Economic Growth and Threatens the Environment

|                                  | 1                  |                    |  |  |
|----------------------------------|--------------------|--------------------|--|--|
|                                  | lqaluit            | Kugaaruk           |  |  |
| Between October 1 and March 31   |                    |                    |  |  |
| For the firt<br>1,000 kWh        | 30.15¢<br>per kWh  | 30.15¢<br>per kWh  |  |  |
| Above<br>1,000 kWh               | 60.29¢<br>per kWh  | 114.16¢<br>per kWh |  |  |
| Between April 1 and September 30 |                    |                    |  |  |
| For the firt<br>700 kWh          | 30.15¢<br>per kWh  | 30.15¢<br>per kWh  |  |  |
| Above 700 kWh                    | 60.29 ¢<br>per kWh | 114.16¢<br>per kWh |  |  |

Source: Qulliq Energy Corporation, Billings Centre



- Cost of electricity is 5-10 times more expensive than grid connected supply
- Diesel power plants for mining projects are the largest GHG emitters
- Many diesel spills each year
- The largest micro-grids and key enablers for renewable energy projects are the Mining operations



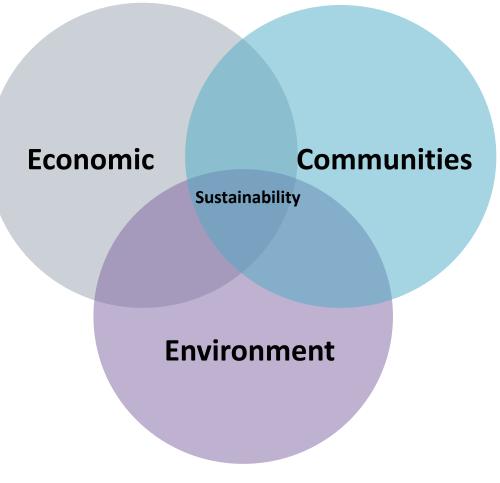
## Diesel Captivity Limits Economic Growth and Threatens the Environment



Deline, N.W.T. ice road



## **Inhibitors to Diesel Displacement**

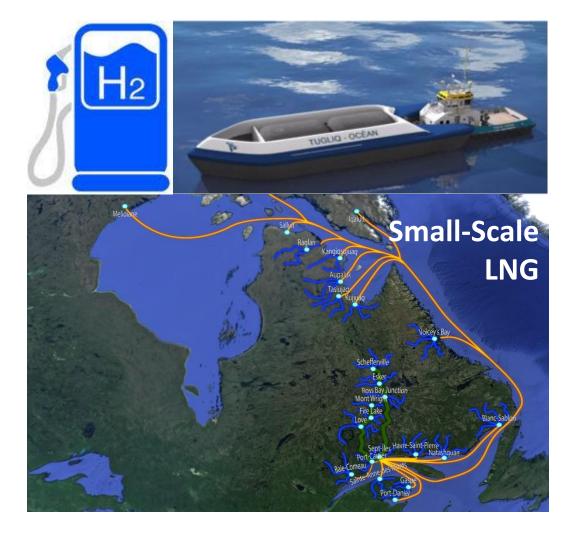

- Myths and pre-conceived ideas toward renewable energy
  - 'Hybrid applications cannot work. Wind is not always blowing. My power plant is not designed for this'
  - 'It is not economical'
  - 'We've looked at it internally and it doesn't make sense'
- Large up front capital expenditures
  - e.g. \$1.3M crane rental
  - e.g. \$1.5M-5M\$ civil and earthwork (access road, foundation)
  - High costs for energy storage required for grid stability and extracting the full value from renewable energy assets (no curtailment)
  - It is not the mine's core business
- Market-entry barriers
  - Established fossil-fuel delivery arrangements
  - Electricity monopolies and regulations
- Lack of infrastructure
  - o Distances
  - Lack of transmission/integration capacity
- Undercapitalization
  - Long, to impossible, break-even



## *'In the middle of every difficulty lies opportunity'* – Albert Einstein

- Ensure the energy supply of the future will act on climate change and protect one of the most fragile ecosystem on the planet
- Use Inuit consultation and traditional knowledge as a building block to select the future sources of energy
- Avoid centralized power generation scheme and promote local sources of energy








## A diversified energy portfolio: The northern Quebec example









## **REALLY ?**



## Energy Portfolio to Diversify Away from Diesel

#### **1.** One stop shop in energy cost optimization

- Consulting / Studies
- Develop
- Finance & Build
- Own & Operate

#### 2. Portfolio approach

- Renewable and clean energy focus
- Toolbox approach to adapt to customer's need
- Shared risk shared rewards



#### **3.** Innovation for the mining industry and the communities

- Core business approach we offload non-core activities from mining companies' balance sheet
- High penetration of renewable in micro grid environment
- Transition through cleaner fossil fuel (natural gas)
- Risk based approach contract structures



## Case Study: The Raglan Mine



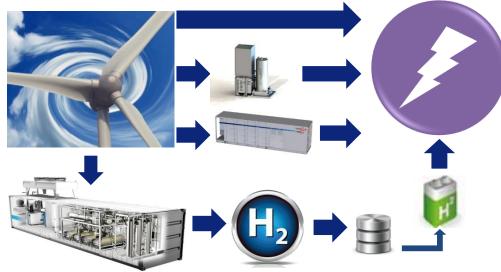


- Access by plane or by sea
- Autonomous Micro-Grid
- Power generation from diesel generators Energy is the 2<sup>nd</sup> largest cost center at the mine
- Life of Mine: more than 20 years as of today.



## Additional Challenges...

#### • Nordic Climate


- Operation needed down to -40 °C
- Severe Icing conditions, strong wind gusts and blizzards
- Foundation on permafrost
- Compensate for loss of heat recovery from diesel engine due to wind energy integration
- Mining Operation
  - Grid stability and genset operation constraints
  - Education and learning curve of the power plant operators
  - Short construction window (June to August)
- Wind Power Variability
- Events stopping/Limiting wind turbine operation
  - Major Icing events
  - Turbine untwist and blade daily maintenance
  - Cut-off due to wind speed, turbulent winds or cold temperature events
  - Miscellaneous wind turbine behavior



## TUGLIQ's Wind-Storage-Diesel Project Raglan Mine

#### The Pilot

- » 3 MW Wind Turbine (Enercon E82) with cold weather package and fit-for-purpose foundation design (spider)
- » 3 technologies of energy storage for a total of 650kW



#### Mission : Demonstrate technical and economical viability of alternative energy for Glencore's RAGLAN Mine

- » Reliability and robustness of the installations meeting the risk profile of mining companies
- » Innovative solution leveraging top-of-the-art technologies (NRCan's EcoEII, Quebec MERN's TechnoClimat)
- » Start small and grow → phased approach (pilot project) for TUGLIQ to become educated buyers/operators for the larger deployment phase in Nunavik and Nunavut



## **Energy Storage Components**

#### **Flywheel**

- 200 kW 1.4 kWh
- Smooth fast wind power transient over 25 seconds

#### **Li-Ion Battery**

- 200 kW 250 kWh
- Smooth fast wind power transient or store energy over 75 minutes

#### Hydrogen loop

- Electrolyser, 200 kW of fuel cells and 4 MWh of Hydrogen storage tanks
- Store excess wind energy for 20 hours

#### Micro controller - HµGRID

 High-Speed Controllers dispatching storage components to minimize wind power variation and store excess wind energy

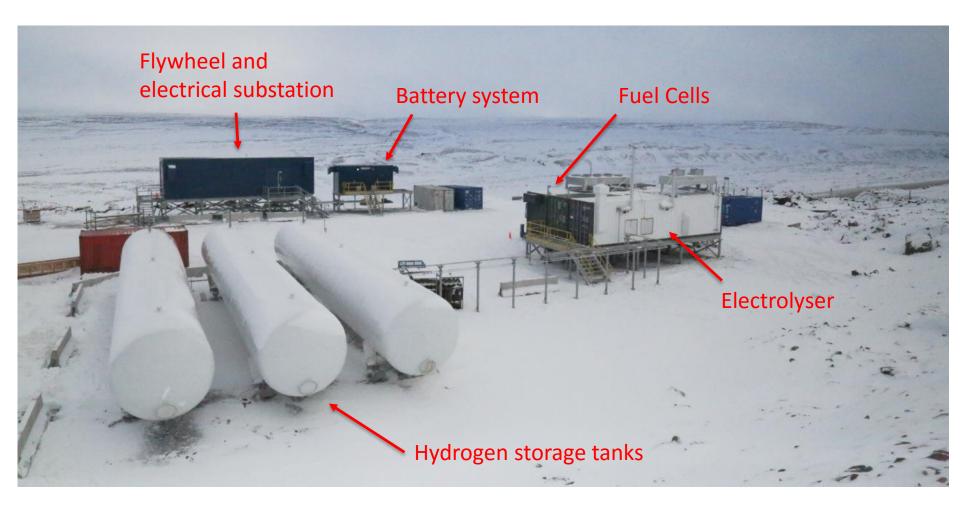


## The Only Turbine 'Levitating' in the Arctic



# And the Party of t or the second SECTION C:

#### Quick facts on the Spider:


- 12 piles of 16" (406 mm) in diameter and 53 ft (16 m) deep, methodically surveyed to make sure required tolerance is met
- 130-tonne LEGO-like steel structure with 2m high H beams (legs of the spider) and a massive central ring
- More than 60 000 wires hand twisted for the assembly of the rebar cages
- ~ 90% less concrete required vs gravity based foundation
- Design suited for permafrost in remote location







### **Energy Storage Plant**





## **Results after 18 Months of Operation**

- Energy Delivered: **13 849 MWh**
- Wind turbine availability: **97.18%**
- GHG Emission Reduction: 9 910 tons
- Fuel displaced: 3.55 Millions of Litres





## **Lessons Learned**

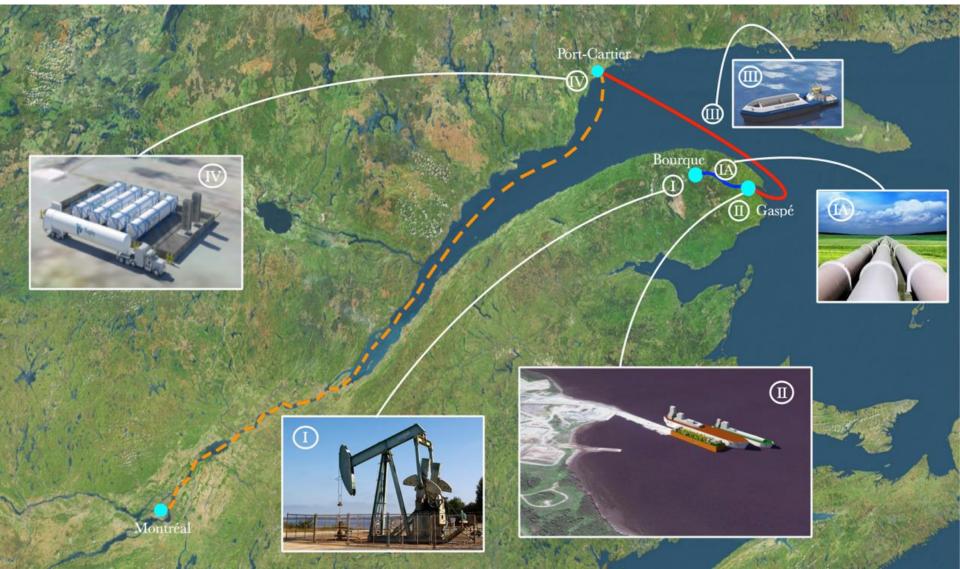
Tools were developed and implemented to improve operability and predict wind power drops, such as:

- Automated daily email to power plant operators with 1 week look ahead wind forecast
- Hourly wind forecast
- Wind turbine icing accumulation estimation algorithm
- Sound alarm for major warning detected (eminent wind turbine stop for maintenance, icing, overheating, untwist, etc)
- Automated curtail wind if wind power drop is anticipated or automatic addition of spinning reserve
- TUGLIQ's technician to control blade de-icing in critical conditions, preventing a sudden stop


## Looking at the Future What's next ?



## Looking at the Future: Transport Electrification & Small-Scale LNG


#### To further increase fuel displacement and lower carbon emission

- » Diesel mining trucks underground requires a lot of ventilation
- » TUGLIQ has started to look at electric vehicles with mining partners
- » Hydrogen can be used in other applications, mobility and heat Maximum diesel



## Natural Gas (Small Scale LNG) as a Transitional Tuel







## **TUGLIQ's LNG Supply Chain**





## In Conclusion

- Renewable energy makes sense in the Arctic
- TUGLIQ has a defined plan to diversify the Northern communities and mines away from diesel (local renewable energy, electrification of transports, cleaner transitional fossil fuel, 100% renewable) and is delivering as per its established milestones
- To date, TUGLIQ has gained significant expertise and knowhow on integration of intermittent renewable power source and energy storage for off grid hybrid applications
  - Project development (financial modeling, FEED study, detailed engineering)
  - Project construction and commissioning
  - Operation and maintenance
  - Optimization
  - Legal framework, creative and adaptive PPA
- Benchmark project, replicable to other off-grid mining sites and communities

## Nakurmiik!